l to γ as era-

10)

the

=

are

205

4

0 0

0

ffi-

1)

ng

ne

ıd

of

ſ

YH2O

Gamson and Watson (6) proposed the following expression for $v_{m,i}$:

$$v_{m,i} = (v_{\omega})_i (5.7 + 3.0 T_{r,i}) \tag{14}$$

where $(v\omega)_i$ is a constant for each component.

The fugacity f_{i,L,p_i} relative to the vapor pressure at the temperature T of the system is calculated by the generalized correlation of Gamson and Watson (5, 6) for determining the fugacity coefficient ν_i as a function of reduced temperature and reduced pressure:

$$\nu_i = \frac{f_{i,L,p_i}}{p_i} \tag{15}$$

Substitution of Equations (14) and (15) into Equation (13) gives the following:

$$\log (f_{i,L,P}^{\circ}) = \log p_i + \log \nu_i + \frac{(\nu\omega)_i (5.7 + 3.0 \cdot Tr) (P - p_i)}{2.303 \ BT}$$
(16)

The vapor pressure p_i for ammonia and water is calculated with the Antoine equation and is then converted to atmosphere units:

Fig. 3. Ratio of standard fugacity of ammonia and its vapor pressure as a function of pressure and temperature.

$$\log p_i = A - \frac{B}{C+t} \tag{17}$$

The Antoine equation constants have been taken from reference 7:

	A	В	C
Water	8.10765	1750.286	235.000
Ammonia	7.55466	1002.711	247.885

The other constants in Equation (16) are:

Equation (16) has been applied in the pressure range from 20 to 200 atm. and at temperatures from -29° to $+127^{\circ}$ C. In this range $f_{i,L,P}^{\circ}$ was seen to be substantially a linear function of pressure at constant temperature for ammonia and water. The values calculated at different temperature are presented in Figures 2 and 3.

$f_{i,\upsilon}/Py_i$: Ratio Between Fugacities in Vapor Phase at Nonideal and Ideal Conditions

For a component in the mixture of the vapor phase, Equation (12) becomes

$$\left(\frac{-\delta \ln f_{i,v}}{\delta P}\right)_T = \frac{\overline{v}_i}{RT} \tag{18}$$

and by integration at constant temperature

$$\ln \frac{f_{i,v}}{Py_i} = -\frac{1}{RT} \int_o^P \left(\frac{RT}{P} - \overline{v}_i\right) dP \quad (19)$$

 TABLE 1. COMPARISON OF EXPERIMENTAL POINTS WITH VALUES CALCULATED WITH EQUATIONS (8) AND (9)

 Ratio of hydrogen-nitrogen is 2.1/1

No.	<i>t</i> , °C.	P, atm.	x NH3		$y^s_{_{\rm NH_3}}$		$y^c_{\rm NH_3}$	$y^i_{ m NH_3}$	$y^s_{ m H_{2O}}$	$y^c_{ m H_2O}$	$y^i_{ m H_2O}$
	FO	20.2	0.000				0.0010				
1	50	50.5	0.663		_		0.2640	0.2539	0.002464	0.00260	0.00076
2		58.2	_	•	0.2180	1	0.2308	0.2177		0.00230	0.00065
3		78.6			0.1850		0.1803	0.1611	0.002490	0.00188	0.00048
4		98.0					0.1520	0.1282	0.002365	0.00162	0.000384
5		117.5			0.1380		0.1342	0.1078	0.002000	0.00146	0.000321
6		146.6			0.1060		0.1150	0.0864	0.001500	0.00131	0.000257
7		170.0					0.1060	0.07355	0.000871	0.00122	0.00022
8		185.4			0.0900		0.0991	0.06832	0.001490	0.00117	0.000203
9	80	58.2	0.663		0.4807		0.4500	0.4400	0.007960	0.0085	0.00252
10		78.5			0.3600		0.3525	0.3257	0.006600	0.00699	0.00186
11		98.0			0.2768		0.2908	0.2643	0.004600	0.00605	0.00149
12		117.5		(K)	0.2600		0.2537	0.2179	0.005600	0.00544	0.00125
13		146.6			0.2120		0.2175	0.1746	0.004480	0.00486	0.00100
14		170.0			0.1885		0.1940	0.1515	0.004500	0.00453	0.000857
15		185.4			0.1850		0.1803	0.1381	0.00398	0.00424	0.00079

Vol. 13, No. 5

AIChE Journal